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Abstract

We analyze the behavior of Euler-Maclaurin-based
integration schemes with the intention of deriving ac-
curate and economic estimations of the error. These
schemes typically provide very high-precision results
(hundreds or thousands of digits), in reasonable run
time, even in cases where the integrand function has
a blow-up singularity or infinite derivative at an end-
point. Heretofore, researchers using these schemes
have relied mostly onad hocerror estimation schemes
to project the estimated error of the present iteration.
In this paper, we seek to develop some more rigorous,
yet highly usable schemes to estimate these errors.

1. Introduction. In the past few years, computation
of definite integrals to high precision has emerged as
a key tool in experimental mathematics. In particu-
lar, it is often possible to recognize an unknown def-
inite integral in analytic terms, provided its numeri-
cal value is known to extremely high precision. High
precision levels are required because integer relation
searches ofn terms withd-digit coefficients require at
leastdn-digit precision for both input data and rela-
tion searching [5, pg. 231]). Such computations often
require require highly parallel implementations. The
quadrature computation in [3], for instance, required
nearly one hour on 1024 processors, and the PSLQ in-
teger relation search in [5, pg. 8] required 44 hours on
32 processors. Moreover, such extreme computations
provide excellent tests of HPC systems—for example,
one of the present authors identified a difficulty with
differing processor speeds on the Virginia Tech system
with these calculations.

The tanh-sinh quadrature scheme is the fastest cur-

rently known high-precision quadrature scheme, par-
ticularly when one counts the time for computing ab-
scissas and weights, although error function quadra-
ture also does well in certain problems [4]. Tanh-
sinh quadrature has been successfully employed for
quadrature calculations up to 20,000-digit precision
[3]. It works well for functions with blow-up singu-
larities or infinite derivatives at endpoints [4], and is
well-suited for highly parallel implementation [3].

At present, these schemes rely on ad-hoc methods
to estimate the error at any given stage. One does not
need to rely on these estimates—one can simply con-
tinue until two iterations give the same result (except
possibly for the last few digits), but this nearly dou-
bles the overall run time, which of course is an issue
for some large quadrature computations that have re-
cently been attempted on highly parallel computers.

Also, whereas one can readily compute very high-
precision values with these methods, mathematicians
often require “certificates,” in other words rigorous
guarantees that the approximation error cannot exceed
a given level. For both of these reasons, we seek much
more accurate and rigorous, yet readily computable er-
ror bounds for this class of quadrature methods. We
present here some results in this direction. Due to
space limitations, we have omitted many details and
proofs. Full details may be found in [2].

1. Quadrature and the Euler-Maclaurin For-
mula. Atkinson’s version of the Euler-Maclaurin for-
mula is as follows [1, pg 285]: Letm > 0 be an in-
teger, and, for notational convenience throughout this
paper assume thath evenly dividesa andb (in general
it is only necessary thath divide b − a). Further as-
sume that the functionf(x) is at least(2m + 2)-times
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continuously differentiable on[a, b]. Then

∫ b

a
f(x) dx = h

b/h∑

j=a/h

f(jh)− h

2
[f(a) + f(b)]

−
m∑

i=1

h2iB2i

(2i)!

[
D2i−1f(b)−D2i−1f(a)

]
+ E(h,m),

whereBj denotes thej-th Bernoulli number,D de-
notes the differentiation operator, and theerror is
given by [1, pg 288]:

E(h,m) =
(a− b) B2m+2 D2m+2f(ξ)

(2m + 2)!
h2m+2,

whereξ ∈ (a, b).
When the functionf(t) and all of its derivatives are

zero at the endpointsa andb (as with a smooth, bell-
shaped function), note that the second and third terms
of the Euler-Maclaurin formula are zero. Thus, for
such functions, the error of a simple step-function ap-
proximation to the integral, with intervalh, is simply
E(h,m). But since, for anym, E(h,m) is less than a
constant (independent ofh) timesh2m+2, we conclude
that the error goes to zero more rapidly than any fixed
power ofh.

This principle leads to state-of-the-art numerical in-
tegration schemes schemes, on transforming the in-
tegral of F (x) on [−1, 1] to an integral off(t) =
F (g(t))g′(t) on (−∞,∞), via the change of variable
x = g(t). Here g(x) is any monotonic, infinitely-
differentiable function with the property thatg(x) →
±1 asx → ±∞, respectively, that also has the prop-
erty thatg′(x) and all higher derivatives rapidly ap-
proach zero for large positive and negative arguments.
In this case we can write, forh > 0,

∫ 1

−1
F (x) dx =

∫ ∞

−∞
F (g(t))g′(t) dt

= h
∞∑

j=−∞
wjF (xj) + E(h)

wherexj = g(hj) andwj = g′(hj). If g′(t) and its
derivatives tend to zero sufficiently rapidly for large
t, positive and negative, then—even in cases where
F (x) has an infinite derivative or an integrable sin-
gularity at one or both endpoints—the resulting in-
tegrandf(t) = F (g(t))g′(t) will be a smooth bell-
shaped function for which the prior Euler-Maclaurin

h e2 e4 e6 e8
1 10−2 10−5 10−3 10−3

1/2 10−6 10−6 10−8 10−10

1/4 10−13 10−12 10−17 10−21

1/8 10−26 10−25 10−34 10−43

1/16 10−52 10−51 10−68 10−87

1/32 10−104 10−102 10−134 10−173

1/64 10−206 10−204 10−266 10−348

1/128 10−411 10−409 10−529 10−696

1/256 10−821 10−819 10−1056 10−1392

h e10 e12 e14
1 10−3 10−1 10−1

1/2 10−8 10−3 10−2

1/4 10−16 10−6 10−3

1/8 10−33 10−11 10−5

1/16 10−66 10−20 10−10

1/32 10−132 10−37 10−19

1/64 10−264 10−70 10−37

1/128 10−527 10−132 10−68

1/256 10−1053 10−249 10−128

Table 1. ‘QUADERF’ errors at successive val-
ues of h

argument applies. Thus, in such cases, the errorE(h)
here decreases very rapidly ash is reduced.

There are various such functionsg that work well
in practice. Usingg(t) := tanh t gives rise totanh
quadrature. Usingg(t) := erf(t) gives rise to “error
function” orerf quadrature. Usingg(t) := tanh(π/2 ·
sinh t) or g(t) := tanh(sinh t) gives rise totanh-sinh
quadrature [9]. For integrand functions to be inte-
grated on(−∞,∞), so that a transformation from a
finite interval to the entire real line is unnecessary, one
can useg(t) := sinh t, g(t) := sinh(π/2 · sinh t) or
g(t) := sinh(sinh t).

One phenomenon that readily becomes apparent
with these schemes is “quadratic convergence,” where
the number of correct digits is approximately doubled
whenh is halved. This is given theoretical backing for
“tanh” in [7] and for “tanh-sinh” in [6]. Table 1 shows
this phenomenon for the following subset of the test
problems used in a previous study withg(t) = erf(t)
[4].



e2 :
∫ 1

0
t2 arctan t dt = (π − 2 + 2 log 2)/12

e4 :
∫ 1

0

arctan(
√

2 + t2)
(1 + t2)

√
2 + t2

dt = 5π2/96

e6 :
∫ 1

0

√
1− t2 dt = π/4

e8 :
∫ 1

0
log t2 dt = 2

e10 :
∫ π/2

0

√
tan t dt = π

√
2/2

e12 :
∫ ∞

0

e−t

√
t

dt =
√

π

e14 :
∫ ∞

0
e−t cos t dt = 1/2.

2. Estimates of the Error Term.
One estimate of the error term is given in [10, pg

34] and [8, pg. 211]: If the2π-periodic functionf(z)
is analytic in a strip|Im(z)| < c, then the error in
a trapezoidal (or step function) approximation to the
integral is bounded by

E(h) ≤ 4πM

ecN − 1
, (1)

where N is the number of evaluation points,h =
2π/N , andM is a bound on the absolute value of the
function on the complex strip. This is an interesting
result in that it begins to explain the phenomenon of
quadratic convergence. However, it is not very useful
in practice, because it requires one to locate singular-
ities of a function in the complex plane and to find a
maximum of the function on a complex strip.

What’s more, the resulting estimate is not partic-
ularly accurate. For example, consider the function
f(t) = 1/(1 + t2), which on the interval[−1, 1]
integrates toπ/2. When transformed withx =
tanh(4 sinh t) (so that, to within a tolerance of10−35,
the function and its first few derivatives are zero at
the endpoints of[−π, π]), the resulting function has
a pole near0.19763359 i. Taking c = 0.197, M =
790, N = 64 andh = 2π/64 in (1), we obtain the
estimate3.32× 10−2. By contrast, the inexpensive er-
ror estimate that we introduce below (3), withm = 1,
gives2.01832× 10−5 for the sameh. The actual error
in a trapezoidal approximation to the integral for this
h, to ten significant digits, is2.0183003673× 10−5.

To derive more accurate error bounds, we need to
better understand the error term in the Euler-Maclaurin
formula. To that end, we state two alternate forms of
the error term, which were established in [2].

Theorem 1 The error term of the Euler-Maclaurin
formula is given by:

E(h,m) = 2(−1)m−1
(

h

2π

)2m

×
∞∑

k=1

1
k2m

∫ b

a
cos[2kπ(t− a)/h] D2mf(t) dt.

For many integrand functions of interest, even the
first term of the infinite summation here is an excellent
approximation to the error. In other words, we can
consider the approximation

E1(h, m) = 2 (−1)m−1
(

h

2π

)2m

×
∫ b

a
cos[2π(t− a)/h]D2mf(t) dt. (2)

We shall also introduce a second approximation,
which we first discovered because of a ‘bug’ in our
computer program:

Theorem 2 Suppose thatf(t) is defined on[a, b], and
has the property thatf(a) = f(b) = 0. Suppose fur-
ther that thef is at least2m-times continuously dif-
ferentiable on[a, b], with Dkf(a) = Dkf(b) = 0 for
1 ≤ k ≤ 2m. Also, as before assume thath dividesa
andb. Further letn ≥ 1 be any integer such that these
conditions are also met withm+n replacingm. Then

E(h,m) = h(−1)m−1
(

h

2π

)2m b/h∑

j=a/h

D2mf(jh)

+ 2 (−1)n−1
(

h

2π

)2m+2n ∞∑

k=1

(
1

k2n
+

(−1)m

k2m+2n

)
×

∫ b

a
cos[2kπ(t− a)/h]D2m+2nf(t) dt.

Theorem 2 immediately suggests the simple ap-
proximation

E2(h,m) = h(−1)m−1
(

h

2π

)2m b/h∑

j=a/h

D2mf(jh).

(3)



We will make useE2 in the computer implementations
described in the next section.

One other estimate is worth mentioning.

Corollary 1 Under the hypotheses of Theorem 1 one
has

|E(h,m)−E1(h,m)| ≤

2 (ζ(2m)− 1)
(

h

2π

)2m ∫ b

a

∣∣∣D2mf(t)
∣∣∣ dt.

This bound can be used, for instance, to establish
a rigorous “certificate” of the estimateE1(h,m), and
thus (after computation ofE1(h, m)) of the quadrature
result itself. Other useful bounds can also be derived.
In particular, we can mirror Corollary 1 for Theorem
2:

Corollary 2 Under the hypotheses of Theorem 2 with
n=1, one obtains

|E(h,m)− E2(h,m)| ≤
2 [ζ(2m) + (−1)mζ(2m + 2)]×
(

h

2π

)2m ∫ b

a

∣∣∣D2mf(t)
∣∣∣ dt. (4)

This highlights what is gained by usingE2(h,m)
rather thanE1(h,m) (note that (4) is particularly
advantageous whenm is odd). In each of Corol-
lary 1 and Corollary 2, by using the Cauchy-
Schwarz inequality, we may replace

∫ b
a

∣∣D2mf(t)
∣∣ dt

by h
√∫ b

a |D2mf(t)|2 dt, which is often significantly
smaller.
3. Implementations and Tests. We have imple-
mented the error estimation formula (2) forE1(h,m),
which requires integrations with the cosine terms, us-
ing Mathematica. We have also tried numerical in-
tegrations, using the computer programs described in
[4], where it is important to use a much smaller in-
tegration interval than theh that appears in the for-
mula (we typically useh/8 or h/16). Implementing
the formula (3) forE2(h,m) is even easier, and re-
quires no symbolic manipulation except for finding the
derivatives of the input functionF (t). Evaluation of
E2(h, 1), for instance, can be done as follows: Let
g(t) be the function defining the quadrature scheme

to be used. Then we can write

D2f(t) = D2[F (g(t))Dg(t)]]
= F (g(t))g′′′(t) + F ′(g(t))[3g′(t)g′′(t)]

+F ′′(g(t))[g′(t)]3

So for instance wheng(t) = tanh t,

D2f(t) = F (tanh t)(−2 sech4t + 4 sech2t tanh2 t)
+F ′(tanh t)(−6 sech4t tanh t)
+ F ′′(tanh t) sech6t.

Note that in formula (3) forE2(h,m), the function
D2mf(t) is evaluated at the same equi-spaced abscis-
sas that are used in the quadrature calculation itself. It
is often not necessary to perform the estimation cal-
culations to the full precision used in the quadrature
calculation (although in his paper we use full preci-
sion). In any event, these estimates can be computed
quite rapidly.

Tables 2 through 5 include computational analysis
of E2(h,m), using test functions

f1 : F1(t) = 1/(1 + t2 + t4 + t6)
f2 : F2(t) = (1− t4)1/2

f3 : F3(t) = (1− t2)−1/2

f4 : F4(t) = (1 + t)2 sin(2π/(1 + t)),

with interval of integration. [−1, 1]. The tanh-sinh
rule was used for quadrature. In problems f1, f2 and
f4, 400-digit arithmetic was employed. In problem
f3, 1100-digit arithmetic was used, although 550-digit
arithmetic suffices here if one employs a “secondary
epsilon” technique described in [4]. Note thatF2(t)
has an infinite derivative at the endpoints, andF3(t)
has a blow-up singularity at the endpoints, whileF4(t)
represents a worst case for these methods, since it is
highly oscillatory near−1. In particular, while the first
two derivatives of the transformed functionf4(t) tend
to zero with large positive and negative arguments, the
third and higher derivatives do not. (See Figure 1.)

Recall that for the tanh-sinh scheme, a function
F (t) to be integrated on[−1, 1] is transformed to the
functionf(t) = F (tanh(sinh t)) sech2(sinh t) cosh t,
integrated over(−∞,∞). For the problems f1, f2 and
f4, the “infinite” integration interval[a, b] is taken to be
[−7, 7], which is (provably) sufficient to insure that all



Figure 1. The four test functions
F1, F2, F3, F4

of these computations agree with values on(−∞,∞)
to within 10−400 in each case. For the problem f3, the
interval is [−8, 8], which is sufficient to insure accu-
racy to within10−600.

The valuesE(h) shown in the first column of
the four tables are the actual errors of the quadra-
ture results, namelyE(h) =

∫ 1
−1 F (t)dt − Q(h),

whereQ(h) is the numerical approximation to the in-
tegral using the tanh-sinh rule. The correct quadra-
ture results for the first three problems areπ/4 +
log(1 +

√
2)/
√

2,
√

π Γ(5/4)/Γ(7/4) andπ, respec-
tively. We know of no classical closed-form evalua-
tion for problem f4, but in terms of thecosine inte-
gral the result equals− 4

15π5 Ci (π) + 4
15 π3 − 8

5 π ≈
−2.76989612386024129018 . . . Here Ci(x) = γ +
ln(x) +

∫ x
0

cos(t)−1
t dt, andγ is Euler’s constant.

Except for problem f4, we include results for
E2(h,m) with m = 1, 2, 3, 4, or, in other words, es-
timates based on the second, fourth, sixth and eighth
derivatives off(t), respectively.

It is clear from these results that the estimates
E2(h,m) are extremely accurate in the first three test
problems. In each of these problems,E2(h, 1) through
E2(h, 4) all agree with the actual errors to at least eight
significant digits whenh = 1/4, and to more than 120
significant digits whenh = 1/64 (in the problem f3,
the four estimates are correct to270 significant digits
whenh = 1/64). Indeed, ash is reduced the esti-
mates actually increase inrelativeprecision as well as
in absolute precision, approximatelydoublingin rela-
tive precision (in digits) with each halving of the in-
tervalh (in other words, exhibiting quadratic conver-
gence). The estimateE2(h, 1) is always the most ac-

curate, although the higher-level estimates are never
far behind.

For the pathological problem f4, with highly oscil-
latory behavior near−1, the estimates are not nearly
as accurate. But even here they are within a factor of
three for allh ≤ 1/8—more than sufficient to deter-
mine the order of magnitude of error in practical com-
putation.
4. A Mathematical Physics Example. One of
the present authors (Borwein) and David Broadhurst
found the following conjectured identity:

I =
24

7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt
?= L−7(2)

=
∞∑

n=0

[
1

(7n + 1)2
+

1
(7n + 2)2

− 1
(7n + 3)2

+
1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]
. (5)

This integral arose out of studies in quantum field the-
ory, in analysis of the volume of ideal tetrahedra in
hyperbolic space. Such studies are currently of sub-
stantial interest to mathematical physicists, topologists
and knot theorists. Note that the integrand function
has a nasty singularity att = arctan(

√
7). The ‘?’

indicates no formal proof is yet known. In [3], we
applied a highly parallel implementation of the tanh-
sinh quadrature algorithm to calculate the numerical
value of this integral to 20,000-digit precision, and
found that it agreed precisely with a 20,000-digit eval-
uation of the right-hand side. Our integral evaluation
employed only an ad-hoc error estimation procedure,
and colleagues challenged us to find a more modest
but rigorous “certificate” for this result. To that end,
we note that (5) can be written as

I =
24

7
√

7

(
b1

∫ 1

−1
w1(t) dt− b2

∫ 1

−1
w2(t) dt

+b3

∫ 1

−1
w3(t) dt− b4

∫ 1

−1
w4(t) dt

)
,

where

w1(t) = log [tan(a1 + b1t) + c1] ,
w2(t) = log [− tan(a2 + b2t) + c2] ,
w3(t) = log [tan(a3 + b3t) + c3] ,
w4(t) = log [tan(a4 + b3t) + c4]



and where

a1 = (arctan(
√

7) + π/3)/2,

b1 = (arctan(
√

7)− π/3)/2,

c1 =
√

7,

a2 = (arctan(
√

7) + π/3)/2,

b2 = (arctan(
√

7)− π/3)/2,

c2 =
√

7,

a3 = (arctan(
√

7) + π/2)/2,

b3 = (− arctan(
√

7) + π/2)/2,

c3 =
√

7,

a4 = (arctan(
√

7) + π/2)/2,

b4 = (− arctan(
√

7)− π/2)/2,

c4 = −
√

7.

We calculated the estimated errorsE1(h, 1) through
E1(h, 5), for each of the four component integrals,
using the tanh-sinh rule, withh = 10−4 and 220-
digit arithmetic. We found that each of these 20 er-
rors is less than10−200 (in fact, this is true even when
h = 10−2). As part of the computation of the error
boundE2(h, 5), we determined that|D10f(t)|, where
f(t) = w4(g(t))g′(t), is bounded by106 within the in-
terval[−3, 3], and has relatively negligible values out-
side this interval. This fact was confirmed by symbolic
computation usingMathematica. Applying formula
(4) and using the note immediately following (4) on
a hand calculator, we obtain a bound of3.82 × 10−49

for this integral. The other three integrals yield slightly
smaller bounds.Hence,3.82 × 10−49 is a certificate
for the integral (5). 2

Of course, this is all premised on: (1) correct imple-
mentations of the algorithms, (2) faithful implementa-
tion of the underlying arithmetic (performed using the
ARPREC software), (3) correct symbolic differentia-
tion (performed usingMathematica), and (4) correct
location of the maximum of the tenth-order deriva-
tives (performed using ARPREC and confirmed using
Mathematica).
5. Conclusion. We have derived two estimates of
the error in Euler-Maclaurin-based quadrature, one of
which is particularly simple to implement, since it only
involves summation of derivatives of the transformed
function, at the same abscissas as the quadrature calcu-
lation itself. It appears, from our results in several test

problems, that the simplest instance of these estimates,
namelyE2(h, 1), is not only adequate, but in fact very
accurate onceh is even modestly small. What is more,
the difference between this estimate and the actual
error can be bounded with an easily computed for-
mula, thus permitting “certificates” of quadrature val-
ues computed using Euler-Maclaurin-based schemes.
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h E(h) |E(h)− E2(h, 1)| |E(h)− E2(h, 2)| |E(h)− E2(h, 3)| |E(h)− E2(h, 4)|
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1/64 −2.41147× 10−129 9.08805× 10−259 4.54403× 10−258 1.90849× 10−257 7.72485× 10−257

Table 2. Results for F1(t) = 1/(1+t2+t4+t6)
on [−1, 1].

h E(h) |E(h)− E2(h, 1)| |E(h)− E2(h, 2)| |E(h)−E2(h, 3)| |E(h)− E2(h, 4)|
1/1 2.92136× 10−2 4.12347× 10−5 2.06449× 10−4 8.69796× 10−4 3.54584× 10−3
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1/16 3.56399× 10−42 1.36460× 10−81 6.82298× 10−81 2.86565× 10−80 1.15991× 10−79

1/32 4.54865× 10−82 6.34476× 10−161 3.17238× 10−160 1.33240× 10−159 5.39305× 10−159

1/64 2.11492× 10−161 3.89818× 10−319 1.94909× 10−318 8.18618× 10−318 3.31345× 10−317

Table 3. Results for F2(t) = (1 − t4)1/2 on
[−1, 1].

h E(h) |E(h)− E2(h, 1)| |E(h)− E2(h, 2)| |E(h)− E2(h, 3)| |E(h)− E2(h, 4)|
1/1 −9.38039× 10−5 2.00740× 10−7 1.00302× 10−6 4.20595× 10−6 1.69621× 10−5

1/2 6.69591× 10−8 1.17622× 10−15 5.88109× 10−15 2.47006× 10−14 9.99785× 10−14

1/4 −3.92072× 10−16 2.48852× 10−32 1.24426× 10−31 5.22589× 10−31 2.11524× 10−30

1/8 −8.29506× 10−33 2.17847× 10−66 1.08924× 10−65 4.57479× 10−65 1.85170× 10−64

1/16 −7.26158× 10−67 4.51319× 10−135 2.25659× 10−134 9.47769× 10−134 3.83621× 10−133

1/32 −1.50440× 10−135 3.19951× 10−272 1.59976× 10−271 6.71897× 10−271 2.71958× 10−270

1/64 1.06650× 10−272 4.25792× 10−546 2.12896× 10−545 8.94163× 10−545 3.61923× 10−544

Table 4. Results for F3(t) = (1 − t2)−1/2 on
[−1, 1].

h E(h) |E(h)− E2(h, 1)|
1/1 −6.45859× 10−1 3.54091× 100

1/2 2.54145× 10−2 7.23759× 10−1

1/4 −1.69389× 10−2 1.00104× 10−1

1/8 −8.84080× 10−3 1.37392× 10−2

1/16 1.08078× 10−3 8.85166× 10−4

1/32 −2.39628× 10−4 8.44565× 10−5

1/64 −4.87134× 10−5 3.42934× 10−5

Table 5. Results for F4(t) = (1 +
t)2 sin(2π/(1 + t)) on [−1, 1].


